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ABSTRACT

A linear point design methodology for minimizingetlrror
in on-line Kalman filter-based aircraft engine penfance
estimation applications is presented. This tectegpecifically
addresses the underdetermined estimation probléerevthere
are more unknown parameters than available sensor
measurements. A systematic approach is appliedddupe a
model tuning parameter vector of appropriate dinmengo
enable estimation by a Kalman filter, while minimg the
estimation error in the parameters of interest.idgiparameter
selection is performed using a multi-variable iteea search
routine which seeks to minimize the theoretical msquared
estimation error. This paper derives theoreticalm&a filter
estimation error bias and variance values at stetaty
operating conditions, and presents the tuner setecoutine
applied to minimize these values. Results fromapplication
of the technique to an aircraft engine simulatios presented
and compared to the conventional approach of tselection.
Experimental simulation results are found to beagneement
with theoretical predictions. The new methodolagghown to
yield a significant improvement in on-line enginerformance
estimation accuracy.

INTRODUCTION

An emerging approach in the field of aircraft emgin
controls and health management is the inclusiomeaf-time
on-board models for the in-flight estimation of &y
performance variations [1,2,3]. This technologypitglly
based on Kalman filter concepts, enables the estimaf
unmeasured engine performance parameters whichbean
directly utilized by controls, prognostics and lieal
management applications. A challenge which comg@iahis
practice is the fact that an aircraft engine’s periance is

affected by its level of degradation, generally adibed in
terms of unmeasurable health parameters such iageefies
and flow capacities related to each major enginedut®
Through Kalman filter-based estimation techniqties,level of
engine performance degradation can be estimatedn ghat
there are at least as many sensors as paramebteretiimated.
However, in an aircraft engine the number of seswailable
is typically less than the number of health par@nset
presenting an under-determined estimation probdfecammon
approach to address this shortcoming is to estimatgh-set of
the health parameters, referred to as model tupémgmeters.
While this approach enables on-line Kalman filtaséd
estimation, it can result in “smearing” the effeat$ un-
estimated health parameters onto those which ammadsd,
and in turn introduce error in the accuracy of allemodel-
based performance estimation applications. Recehitty [4]
presented an approach based on singular value gesiion
which selects a model tuning parameter vector wfdoough
dimension to be estimated by a Kalman filter. Ttaslal tuning
parameter vector, was constructed as a linear combination of
all health parameterh, given by
q=Vh (1)
where the transformation matri®y/’, is selected applying
singular value decomposition to capture the ovexfédict of the
larger set of health parameters on the engine hlagsaas
closely as possible in the least squares sensthidmpaper a
new linear point design technique which appliegy/stesnatic
approach to optimal tuning parameter selection wi#
presented. This technique, like the one presemteldef. [4],
also defines a transformation matrl,, used to construct a
tuning parameter vector which is a linear comboratof all
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health parameters, and of low enough dimensionnable
Kalman filter estimation. The new approach optimaélects

the transformation matrix\V’,
steady-state estimation error

to minimize the theoretical
in the engine pedoca

parameters of interest. There is no known closeah folution

for optimally selecting/” to satisfy this objective. Therefore, a

multivariable iterative search routine is appliedperform this

function.

The remaining sections of this paper are organiasd
follows. First, the mathematical formulation of tharameter
estimation problem is presented, and theoreticimaton
error values are derived assuming linear, steaatg-siperating
conditions. The theoretical estimation error infation is
directly used by the iterative search routine aggpto optimally
select the Kalman filter tuning parameter vectohiclw is
described next. Example estimation results fromeghy@ication
of the new methodology to an aircraft turbofan agagi
simulation are then presented and compared toctimeeaitional

approach of tuning parameter selection,

selection approach presented in Ref. [4], and thgimuma

posteriori performance estimation approach commonly applied

for off-line (ground-based) aircraft engine gashpanalysis
applications [5,6]. After the example, there isiscdssion of
practical considerations for applying the methodd aa
discussion of future work. Finally, conclusions presented.

NOMENCLATURE

A A Ag

B, By, By,

C, Ci G system matrices

D! F! xhs FXqu

G, L,M,N

C-MAPSS Commercial Modular Aero-Propulsion System
Simulation

Fn net thrust

thy Gx: Ghu Gz
H

HPC
HPT
|

Ks
LPC
LPT
MAP
Nf
Nc
Phy Pz
P24
Ps30

P P

P;(ﬁyk' x4,k " zk
Pao

Q! Qxhy qu

R

SmLPC
T24
T30

estimation bias matrices
matrix which relates health parameter effects to
steady-state engine outputs
high pressure compressor
high pressure turbine
identity matrix
Kalman filter gain
low pressure compressor
low pressure turbine
maximuma posteriori
fan speed
core speed
health & auxiliary parameter covariance matrices
HPC inlet total pressure
HPC exit static pressure
covariance matrices of estimated parameters

Kalman filter state estimation covariance matrix
process noise covariance matrices
measurement noise covariance matrix

LPC stall margin

HPC inlet total temperature

HPC exit total temperature

the SVDertun

T40
T48
T50
YA
VSV
VBV
Wi
W,
hy

ik

Uy

Vi
Wi, Wh ky Wih k
X
Xk
qu,k
Yic

Z
gxq,k

Subscripts
k

xh

xXq

ss

Superscripts
T

N

T

Operators
E[]

tr{-}
SSEE(")
WSSEE(+)
Il #

combustor exit temperature

exhaust gas temperature

LPT exit temperature

transformation matrix relatinig, to gy
variable stator vane

variable bleed valve

fuel flow

auxiliary parameter weighting matrix
health parameter vector

Kalman filter tuning parameter vector
actuator command vector

measurement noise vector

process noise vectors

state vector

augmented state vectog @ndhy)

reduced order state vectog &andqgy)

vector of measured outputs

vector of unmeasured (auxiliary) outputs
residual vector (estimate minus its expected value)

discrete time step index
augmented state vectorgndh)
reduced order state vectorgndq)
steady-state value

pseudo-inverse
estimated value
error value
mean value
transpose

expected value of argument
trace of matrix
sum of squared estimation errors
weighted sum of squared estimation errors
matrix Frobenius non

PROBLEM FORMULATION
The discrete linear time-invariant engine state cepa
equations about a linear design point are given as

X1 = A%+ BU + LR +wy
=Cx, +Du, + Mh, +v, )
z = Fx +Gu, + Nh,

wherek is the time indexx is the vector of state variablesis

the vector of control inputy,is the vector of measured outputs,
and z is the vector of auxiliary (unmeasured) model atgp
The vectorh represents the engine health parameters, which
induce shifts in other variables as the healthmpatars deviate
from their nominal values. The vectarsaandv are uncorrelated
zero-mean white noise input sequenc@swill be used to
denote the covariance of andR to denote the covariance of
v. The matriced\, B, C, D, F, G, L, M, andN are of appropriate



dimension. The health parameters, representedebyeitiorh,
are unknown inputs to the system. They may beddeas a set
of biases, and are thus modeled without dynamidgh Wis
interpretation Eq. (2) can be written as:

X A L[| X B w
k+1 Kk h,k
Axh Xxh k Bxh Wyh k

= ApXenk T Byply + Wy

Xk
ye =[C M]h +Du, +V,
th_/al(—a (3)

Xxh,k

= CinXmk T DU + v,

2 =[F ﬁ,][ﬁjwuk

Fxh
Xxh k

= Fan X + GU

The vectorw,, is zero-mean white noise associated with the

augmented state vectok' [h']", with a covariance ofy,. W,
consists of the original state process noigsgconcatenated
with the process noise associated with the healitarpeter

vector,w.
w
Wk :[ “ } 4)

The eigenvalues o4, consist of the original eigenvalues
of A plus an additional dirhj eigenvalues located at 1.0 on the

unit circle due to the augmentation. Thus, the aegmented
system given in Eg. (3) has at least as many e@lees located
on the unit circle as there are elementb.ddnce theh vector
is appended to the state vector, it may be direzslymated,
provided that the realization in Eq. (3) is obsbtgaUsing this
formulation, the number of health parameters that be
estimated is limited to the number of sensorsdiheension of
y [7]. Since in an aircraft gas turbine engine thare usually
fewer sensors than health parameters, the proldeomtes one
of choosing the best set of tuners for the apptinafThis paper
presents a systematic methodology for the optimigicton of
a model tuning parameter vectqr, of low-enough dimension
to be estimated by a Kalman filter, while minimigirthe
estimation error in the model variables of intereShe
following sub-sections will cover the steps in theoblem
setup. This includes construction of the reducettorstate
space model, formulation of the Kalman filter estiam,
calculation of the mean sum of squared estimatioorg and
optimal selection of the transformation matrix tonimize the
estimation error.

Reduced-Order State Space Model
The model tuning parameter vectqy,is constructed as a
linear combination of all health parametdrsgiven by

q=V'h (6)

whereq O R™, h O RP, m<p, andV is anm x p
transformation matrix of rank, applied to construct the tuning
parameter vector. An approximation of the healthapeter

vector, h, can be obtained as

h=V"q (6)

whereV'" is the pseudo-inverse ®f. Substituting Eq. (6) into
Eq. (3) yields the following reduced order state space eqgation
which will be used to formulate the Kalman filter

*t
[Xml}:{A LV MXK}’[B}UH W,
O1 0 I O« 0 Wo.k
. LY]

qu Xxq.k Bxq Wyq k

= A(qqu,k + quuk +W><q,k

7| %
={C Mmv"T +Du, +v,
Yi [—,JL]J ke T Vi )
xa qu,k

= C>(qX><q,k + Duk +Vk

k
D

Xxq,k

+Gu,

z =[F Nv**][ﬂmuk
S

Fuq

= qu qu, k

The state process noisg,, and its associated covarianCgg,
for the reduced order system are calculated as

[ o o]l we
WakZ1g v [Me T g v W,
[t o I of

Qa=lo v |20 v

Kalman Filter Formulation

In this study, steady-state Kalman filtering is leggh This
means that while the Kalman filter is a dynamicteys the
state estimation error covariance matrix and théna gain
matrix are invariant—instead of updating these ima¢r each
time step they are held constant. Given the redocéer linear
state space equations shown in Eq. (7), the s&ttmation

(8)



error covariance matrixpP,, is calculated by solving the
following Ricatti equation [8]:
P, = AKqP Ay~ AGP.CL(CyP.CH R

xq ooA(q + Xq

9)

The steady-state Kalman filter galg,, can then be calculated
as follows [8]

=P,CL(C,P.CL+R)™ (10)

and, assuming steady-state, open-loop operation (), the
Kalman filter estimator takes the following form

)’Z k = A<q)2xq,k—l + Koo (yk _Cxq A<q)2xq,k—1) (11)

The reduced order state vector estim@tqe,produced by Eq.

(11) can be used to produce an estimate of the entgoh state
vector, and the auxiliary parameter vector as ¥adlo

.1 o],
Xxh,k_ 0 V*T qu,k

5 :[F NV*T])”(Xq’k

12)

Analytical Derivation of Estimation Error
The estimation errors irﬁmk and 2, are defined as the

difference between the estimated and actual values

Xk = )’th,k
4 =%-17

~ Xk (13)

Due to the under-determined nature of the estimgiroblem,
it will be impossible for the Kalman filter estinoat to
completely restore all information when transforgni§ into

h. As such, the Kalman filter will be_a biasestimator (i.e. the
expected values ofixhk and 7 will be non-zero). The

estimation errors can be conS|dered to consist vad t
components: An estimation error bias, and an ettma
variance. The estimation error bias vectors arévabant to the

mean estimation error vectors defined as

hk — E|:)~(xh,k:| = E[)A(xh,k _Xxh,k]

=E[2 )= E[2, -2 .

el

where the operatoE[.] represents the expected value of the
argument. The variance of the estimates can bedfdun
constructing their respective estimation covariamedrices

FRL(CNELENY S EN
P =E[ (3 -E[2 ) (5 -E[2 ]|

(15)

Diagonal elements of the covariance matrices eilect the
variance in individual parameter estimates, whifed@gonal
elements reflect the covariance between paramstenaes.
The overall sum of squared estimation errors (SSEi) be
obtained by combining the estimation error bias estiiation
variance information as

SSEE (R, ) = Xy Ko +1r{ Py}

(16)
SEE(2) =777 +r{R)

wheretr{.} represents the trace (sum of the diagonal eleshent
of the matrix. In this paper, theoretical values éach error
component will be derived assuming steady-statendpop
(u= 0) operating conditions. First, the estimatioroebias is
derived, followed by a derivation of the estimati@riance.

Estimation Error Bias. The estimation error biases,
ixhk and Z_, can be analytically derived for an arbitrary tieal

parameter vectoh, at steady-state operating conditions. This is
done taking advantage of the following expectedual
properties at steady-state open-loop operatingitions

E[ X ] E[% ]= %
E[h ]=h
E[Xxh,k] = Xan,ss
E[Yk]: Yss
E[z,]= 2z
E[u ]=0
E[w =0
E[v ]=0
E[ Zax | = E[ Raret | = R
EI:Xxh,k:I = Xxh,$

E[%]=%

7)

where the subscripts8’ denotes steady-state operation. By
taking expected values of EqQ. (&), Yss andzs can be written
as functions of the health parameter vebtor



E[ X1 |= AE[ % |+ B(E[u, |+ L(E[h |+ E[w]
X = Axg +Lh (18)
xs =(1-A)"Lh

E[ v, |=CE[ % |+ DE[u, |+ M E[h |+ E[v, ]
Y = Cxg +Mh (19)
Ve :(C(I —A)_1L+M)h

E[ z |= F [E[ x, |+ GE[u, |+ NE[h_]
z, =Fx,+Nh (20)
z,=(F(1-A)"L+N)n

Next, by taking expected values of both sides aof @d), the
expected value of<xq'k can be obtained as a functionygf

E[)?qu = A, EE[&Xq,k_l]

+ Koc (E[yk:l_quAq [E[s\(xq,k—l:|)
_ _ _ (21)
qu,$ = A<qqu,$ + Koo (y$ _Cxq A<qqu,$)

= -1
Raw = (1 = Ag +K.CuAq) KuVs

Then, making the substitutiop_ = (c(| -A'L+M )h given in
Eq. (19), the expected steady-state valuﬁxgg can be written
as a function oh

= -1
R = (1 = Ag +KuCygAq) -

wa(C(I—A)_1L+M)h 2

The steady-state augmented state estimation easrchn then
be found, and partitioned into error bias informatifor the

original state vectorx_, and the health parameter vectﬁ&g,,
by combining Egs. (12), (14), (18) and (22) to ¢iel

hs = E[)A(xh,k _Xxh,k]
h,ss = §xh,ss - Xxh,ss

| 1 07«
xh,ss Thss = 0 V*T qu,$_xxh,$

20l

x|
1

Rw =| 2| 2| xK, [c (23)
hy

The steady-state auxiliary parameter estimatioarédsias can
also be derived by combining Egs. (12), (14), @ (22) to
yield

7, =E[2 -]
Lvhn
§$:|:F NV*T:I)’qu&_zss

*t _ -1
[F NV ](| qu+chXqA&q) .

Zo=|xK [ClI-A"L+M ... h
[ F(1-A)"L+N]
z.=Gh .

The estimation error bias equations given in EZ3) and
(24) are functions of an arbitrary health parameeéator,h. As
such they are representative of the parameter asbimerror
biases in a single engine, at a given point itifééime of use
where its deterioration is represented by the hgadtrameter
vector h. The average sum of squared estimation error biase
across a fleet of engines can be calculated as



i e = E[Xxhss ><h$] E[tr{ xh$x><hss}:|
=E[t{c,hc}} ]

(25)
=tr{G,, [E[ hh" |G},

{
{[ (26)

where the matrixP,,, defined asE[hhT], reflectsa priori or

historical knowledge of the covariance in the Heplirameters
across all engines. If available, it can be usqorédlict the sum
of squared estimation errors biases as shown naiab (26).

Estimation Variance. Next, derivations are presented
for the augmented state estimate and auxiliary npater
estimate covariance matricqs%k and p,, respectively. These

matrices will be calculated as a function of thdused-order

state vector estimation covariance mamgfk, which is
defined as
~ T
Pax =E (qu,k [qu k:|)(xx [qu k:') (27)
£xq,k El-q‘k

where the vectogqy is defined as the residual betweexgvk at

time k and its expected value. Sin@[f(xq‘k]z §Xq’$, &gk can
be obtained by subtracting Eq. (21) from Eq. (11)
Exak = g(xq,k - E[)A(xq,kJ
= )’qu,k _§xq,$
= A&q;(xq,k—l +K, (yk _Cqu(q)’qu,k—l)
bk (28)

~(Ackan Ko (Yo ~CaAakes)

Xxq,ss

- Kochq A(q ) ()zxq,k—l

:(A<q _qu,$)+Koc(yk_yss)

Making the substitutions s = )‘(quk_l - im, and
Vi = Vi~ Vs Yields
gxq,k = (A<q - Kooqu A<q)g><q,k—1 + Kocvk (29)

The estimation covariance matr]'9§d . Is then calculated as

Pk = E| £ |
:[A«l_ o qu<q:| I:qu_lgl—qu‘lil
x[ Ay ~K.CuAq | .-
+[A<q_ ® qu<q] [qu—lvl:IKl---

FKE[Yel 1 [[Aq ~KuCAg ] -
+ KmE[vkvk ] K.

(30)

The substitutionsE[gxq’k_lqu'k_l] = Py and E[VkVI]: R can
be made in the above equation. Singgy. andy, are
uncorrelated, the substitutiolE[sxq,k,le]: E[vkgquk,l]: 0 can
also be made, producing

P§<d,k :[A< -K Cqu(q:| XG,k-1 |:A<q _KooquA<q:|T
+K_RK]!

(31)
At steady-state operating cond|t|qtmqk 4 Making this

substitution in (31) produces the following Ricadfjuation
which can be solved qum:
P

X4,k ZI:AQ 0 qu(q:' X4,k |:A(q
+K_RK/

=P..

%G,k "

CuaAa | @2

It should be noted thalpm

identical toP,, produced via Eq. (9) ithe system’s actual state
process noise covariance is identical to @agassumed in the
design of the Kalman filter. HoweveQ is often treated as a
Kalman filter design parameter to provide accepgtatynamic
response. For the purpose of this derivation, we lasumed a
steady-state operating condition where the statmhlas and
health parameters are invariant, and thus the lasisiem

process noise is zero (i.@4 = 0). In this casep,, will not

it can be used to calculate

obtained by solving (32) will be

equal P,,. Once P is obtained,

Pi the covariance of X,

E[()’th,k - E[)A(xh,k])(f(xh,k - E[)A(xh.k])T]

which is defined as



(33)

[ o I o
P)?ﬁ,k_ 0 V*T vak 0 V*T

The augmented state vector estimation covarian@ndn Eq.
(33) can be partitioned into covariance informatimn the
original state vectorp,, (upper left corner of tkpiﬁ ’ matrix),

and the health parameter vectpr, (lower right corner of the

P>"<ﬁ,k matrix)

b P)‘<k
o = " (34)
h,k Pﬁ,k

The P matrix from Eq. (32) can also be used to calculate
P, the covariance in the estimationzgfwhich is equivalent

to e[(z, - e[z - E[2 )]

P =[F NP

i [F W (35)

The variance in the estimateitsmk and z can be obtained

from the diagonals of the covariance matrices prediby (33)
and (35) respectively.

Sum of Squared Estimation Errors. Once Egs. (25),
(26), (33) and (35) are obtained, they may be used
analytically calculate the mean sum of squaredmedidn
errors over all engines by combining the respectistimation
error bias and estimation variance information esvipusly
shown in Eq. (16). The mean augmented state vector of

squared estimation errorsssEE(g,, ), and the mean

auxiliary parameter vector sum of squared estimagoors,
SSEE (2, ), become

SSEE ()A(xh'ﬂea) = §xzh,ﬂeet +tr{ P§<H,k}
= tr{th RGu + P>‘<H,k}
(36)
SSEE(Zﬂea ) =Zi +tr{ sz}
= tr{GZPhGI + sz}

If required, a weighted sum approach can be appbed
normalize the contributions of individual auxiliaparameter
estimation errors. This is often necessary as tmeag be
several orders of magnitude difference betweenathdliary
parameters of interest. A weighted sum approaclvepts
domination by individual parameters. In this stugiagonal

auxiliary parameter weighting matri¥y,, is applied based on
the inverse of auxiliary parameter variance (oletdifrom the
main diagonal of the auxiliary parameter covariamegrix, P,)

P :[F(I —A)‘1|_+NJPh[F(| —A)_1L+NJT

z

-1

Pu 0 O (37)
W= 0 . 0
0 0 P

W, is then applied to calculate of a “weighted” suihawxiliary
parameter squared estimation errors given as

WSSEE (2,4, ) =tr{W,[G,RG] +P, | (38)

From Egs. (23), (24), (33) and (35) it can be oleeithat
both bias and variance are affected by the seteatiothe
transformation matrixy. The sum of squared estimation error
terms derived in this section give rise to an of#tion
problem selectingV’ to minimize the squared estimation error
in the Kalman filter produced parameter estimatéss could
include health parameter estimates, auxiliary patam
estimates, or a combination of parameters. Althahgre is no
known closed form solution for optimally selectine V'
matrix to satisfy the objective of minimizing estition errors,

a multi-parameter iterative search method has ldeserloped
to perform this task, and will be described inlegt section.

Optimal Transformation Matrix Selection

Prior to initiating the search for an optimdl, specific
system design information must be defined or obthinThis
includes:

» Specifying the auxiliary parameters to be estimated

e Generating system state space equations at a fleet
average (50% deteriorated) engine trim point

» Defining measurement noise covariance maRix,

e Defining augmented state process noise covariance
matrix, Qun

+ Defining fleet average health parameter covariaRge,

Some additional clarification is provided regarditige
selection ofP, and Qy, as the distinction between these two
covariance matrices may not be immediately obvioRs.
defines the expected health parameter covariancessaall
engines. It may be based on past knowledge gaineddngine
gas path analysis programs and/or historical ssudfeengine
module performance deterioration. Conversély, defines the
expected process noise covariance in the statabkesi and
health parameters of an individual engine, at glsidliscrete
time step,k. The selection ofQ, will directly impact the
dynamic response and the variance of the estingsesrated



by the Kalman filter, and to a large extépy, is treated as a
design parameter.

After the necessary system information has beeairdd,
the search for an optimal transformation matrixiiaimize the
Kalman filter sum of squared estimation errors cammence.
This is performed using thegnonlin function of the MatlaB
Optimization Toolbox. This function applies an #&tve search
to find the least squares solution of a user-sigetif
multivariable optimization problem. A flow chart gieting the
steps in this optimal iterative search is showRigure 1, and a
further description of each step is given below.

1. Upon startup, an initial random guess bdf is
generated. It is selected such that the matrix étrinis
norm ‘NHF =1. This requirement is applied to help

prevent convergence to a poorly scaled solution.
2. Construct reduced order state-space model, (EQ. (7)
3. Formulate Kalman filter
a. Calculate estimation covariance mati, (Eq. (9))
b. Calculate the Kalman gain matrix, K(Eq. (10))
4. Calculate sum of squared estimation errors (Eq))(36
or weighted sum of squared estimation errors (&8}))(

5. On each iteration the change in SSEE (or WSSEE)
is assessed to
determine if convergence within a user specified

relative to the previous iteration
tolerance has been achieved.
a. If converged, skip step 6 and proceed to step 7
b. If not converged, proceed to step 6 to update

6. V is updated via the Matl&dsgnonlin function, again

requiring thaﬂ\/*HF =1, and the process returns to step 2

7. Upon convergence, the optimization routine retuhas
optimal value oV, and ends.

1. Generate initial guess foV

)

2. Construct reduced order
state-space equations

]

3. Formulate Kalman filter
matrices (P, and K_)

v

4. Calculate (weighted) sum of
squared estimation errors

v

6. Update V" guess through
multi-variable gradient search

No

5. Converged
?

Yes

7. Return optimal V* /

Figure 1. Flowchart of V' Iterative Optimal Search

Experience has shown that the transformation matrix

returned by the optimization routine is not uniquaifferent

matrices can be found which produce a global mininad the
objective function. Experience has also shown tkiz
optimization routine will usually return & matrix which
satisfies, or nearly satisfies (i.e. within 5%),e tiglobal
minimum of the objective function. However, in orde guard
against potential convergence to a local minimurig, prudent
to run the optimization routine multiple times, katime
starting with a different initial guess fof . This is only to
assure the designer that the global minimum isexe€ldl, not to
produce a consister . It should be emphasized that the
optimal search foN is only conducted off-line during the
estimator design process. This calculation is wotidacted as
part of the on-line real-time Kalman filter implentation, and
thus places no additional computational burden upon

TURBOFAN ENGINE EXAMPLE

A linearized cruise operating point extracted frahe
NASA Commercial Modular Aero-Propulsion System
Simulation (C-MAPSS) high-bypass turbofan engineleid9]
is used to evaluate the new systematic tuner smbect
methodology. The linear model has two state vasmbten
health parameters, and three control inputs, atiwshin
Table 1. The model's seven sensed outputs, andsmnding
sensor noise standard deviation, are shown in Tabl€he
auxiliary output parameters of interest to be estéu are
shown in Table 3. The linear model is used as i tmodel
for this application example. The model is run ctmop, so all
control inputs remain at 0, i.e., they do not d&vittom the
trim value for the linear model and no actuatoshspresent.
Deviations in all ten health parameters are assutoebe
uncorrelated, and randomly shifted from their tdonditions
with a standard deviation af0.02 ¢2%). Since a parameter’s
variance is equal to its standard deviation squates health
parameter covariance matri®,, is defined as a diagonal
matrix with all diagonal elements equal to 0.0004.

Next, the estimation accuracy of the systematicegugh
for selecting Kalman filter tuning parameters i compared
to the conventional approach of selecting a sulpédtealth
parameters to serve as tuners (the seven healtmetars
denoted with “*" in Table 1), and the singular wvalu
decomposition approach to tuner selection introdumeLitt in
Ref. [4]. Table 4 shows a comparison of the thécaby
predicted estimation errors (squared bias, varianod total
squared error) and experimentally obtained squastichation
errors for each of the three tuner selection appres T40 and
T50 estimation errors are shown in squared dedrReetkine,
and Fn and SmLPC estimation errors are shown imrsgu
percent net thrust and squared percent stall maegjectively.
The experimental results were obtained through at®&arlo
simulation analysis where the health parameteredaver a
random distribution in accordance with the covareamatrix,
P,. The test cases were concatenated to producegla sime
history input which was provided to the C-MAPSSehln
discrete state space model given in Eq. (2), withugdate rate
of 15 ms. Each individual health parameter test tasted 30 s.



Table 1. State variables, health parameters, and actuators

Satevariables Health parameters Actuators

Wf — fuel flow
VSV - varialbégar vane
VBV —variable bleed valve

Nf — fan speed
Nc — core speed

Fan efficiency

Fan flow capacity*
LPC efficiency*
LPC flow capacity
HPC efficiency*
HPC flow capacity*
HPT efficiency*
HPT flow capacity*
LPT efficiency
LPT flow capacity*

* Health parameters selected as tuners in conveaitiestimation approach,
(identical to sub-set of health parameters selesseminers in Ref. [4])

Table 2. Sensed outputs and standard deviation as percent
of operating point trim values

Sensed output Sandard deviation (%)

Nf — fan speed 0.25%

Nc — core speed 0.25%

P24 — HPC inlet total pressure 0.50%
T24 — HPC inlet total temperature 0.75%
Ps30 — HPC exit static pressure 0.50%
T30 — HPC exit total temperature 0.75%
T48 — Exhaust gas temperature 0.75%

Table 3. Estimated auxiliary parameters

Auxiliary parameter

T40 — Combustor exit temperature
T50 — LPT exit temperature

Fn — Net thrust
SmLPC — LPC stall margin

At the completion of each 30 s test case, the Ingmtameter
vector input instantaneously transitioned to the test case. A
total of 375 30 s test cases were evaluated, meguih an
11,250 s input time history. Three separate Kalfilgars were
implemented using the three tuner selection appexacThe
experimental estimation errors were determined digutating
the mean squared error between estimated and actleds
during the last 10 s of each 30 s test case. Troe ealculation
is based on only the last 10 s so that engine madelts and
Kalman estimator outputs have reached a quasiysttate
operating condition prior to calculating the errdhis ensures
that the experimental results are consistent witie t
theoretically predicted estimation errors which eveterived
assuming steady-state operation.

From Table 4 it can be seen that the theoretiqabigicted
and the experimentally obtained squared estimagoors
exhibit good agreement. If the number of randont teses
were increased to a suitably large number, it iseeted that
the theoretical and experimental results would dentical. It
can also be seen that all three estimators aretahpeoduce
unbiased estimates of the combustor exit temperaftO;

however, their estimates of LPT exit temperatur,Tnet
thrust, Fn, and LPC stall margin, SmLPC, hiased. The
encouraging finding is that the new systematic aagh to
tuner selection significantly reduces the overadlam squared
estimation error compared to the other two appresch
Relative to the conventional approach of tuner ctigle the
experimental mean squared estimation errors in T80, Fn
and SmLPC are reduced 76%, 82%, 80%
respectively. It can also be observed that the Sber
selection approach, which is designed to reducesgtienation
error bias, does in fact reduce the sum of squdiaedes
relative to the subset of health parameters apprddowever,
the SVD approach is also found to increase theanmestin
variance, which contributes to its overall mean asqd
estimation error.

A visual illustration of the effect that tuner sgtien has on
Kalman filter estimation accuracy can be seen gufés 2, 3, 4
and 5, which show actual and estimated resultthfoauxiliary
parameters T40, T50, Fn and SmLPC respectivelyh Pémt
shows a 300 s segment of the evaluated test c@bkesstep
changes that can be observed in each plot everys 30
correspond to a transition to a different healtrapeeter vector.
True model auxiliary parameter outputs are showslack, and
Kalman filter estimates are shown in red. In edgharé the
information is arranged top to bottom according ttmer
selection based upon: a) a subset of health pasasneb)
singular value decomposition; and c) the new syatem
selection strategy. The information shown in thdigeires
corroborates the information in Table 4; namelytialee tuner
selection approaches produce unbiased estimated46f
(Figure 2), while the systematic tuner selectioatsgy yields a
noticeable reduction in the total squared estimateror
(squared bias plus variance) of all four auxilipayameters.

Table4. Auxiliary parameter squared estimation errors

T40 T50 Fn SmLPC

Error CR) Ry (%) (%)

Tuners

Theor. sgr. bias 0.00 561.76 3.84 3.28

74.76 29.65 0.48 0.34

parameters Theor. sgr. error 74.76 591.41 4.31 3.62
Exper. sqr. error 74.90 583.29 4.27 3.60
Theor. sqr. bias 0.00 51246 4.05 5.28

Subset of
health

Theor. variance

SVD tuner Theor. variance 65.99 67.21 0.80 131
selection  Theor. sqr. error  65.99 579.67  4.86 6.59
Exper. sqr. error  66.20 579.39  4.98 6.76

Theor. sgr. bias 0.00 87.81 0.66 0.95

Sytssig‘ratic Theor. 17.49 1855 013  0.35
selection 17.49 10635 079  1.30
1761 10654 086  1.35

variance
Theor. sqr. error
Exper. sqr. error

and 63%,
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Figure 3. T50 estimation (tuner comparison)

Comparison with Maximum a Posteriori Estimation

The presented systematic tuner selection
minimizes the mean squared error of the on-linemasbr at
steady-state operating conditions, taking advantsigerior
knowledge of engine health parameter distributiéwsssuch it
is somewhat analogous to the maximanposteriori (MAP)
estimation method which is commonly applied for ud-
based aircraft gas turbine engine gas path andly$is This
leads to the question, how does the on-line Kalrfitker
estimation accuracy compare to MAP estimation amy#
Prior to making this comparison the mathematicamidation
of the MAP estimator is briefly introduced. Herstaady-state
model of the measurement process in the followimignfis
applied

Y = Hh +v (39)

where the matribH relates the effects of the health parameter
vector, h, to the sensed measuremegtsrom Eq. (19), it can

be seen thatH is equivalent to C(I -A)*L+M . The

maximum a posteriori (MAP) estimator follows the closed
form expression
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Figure 5. SmLPC estimation (tuner comparison)

ho=(R*+HTRH)HTR Y, (40)
The MAP estimator is capable of estimating more

unknowns than available measurements due to thesion of

a priori knowledge of the estimated parameter covariaRge,
However, the MAP estimator, unlike a Kalman filtex,not a
recursive estimator and does not take advantagepast
measurements to enhance its estimate at the cuimanistep.
Furthermore, the MAP estimator only considers aticsta
relationship between system state variables andsume@
outputs—it does not consider system dynamics. Becaf
these differences a Kalman estimator with optimakyected
tuning parameters should outperform the MAP estimat
However, under steady-state conditions, with mitisensor
noise the two estimation approaches should prodimdar
results. To test this theory, a MAP estimator wasighed and
its estimation accuracy was compared to a Kalmiger fivith
tuning parameters optimally selected to minimizee th
estimation errors in the health parameter velgtiirst, the two
estimators were designed and evaluated using tiggnair
sensor noise levels shown in Table 2. Next, the®@enoise



Table 5. Health parameter % squared estimation errors (nominal noise)

Estimator Error type hl h2 h3 h4 h5 h6 h7 h8 h9 h10 Sum
Theor. squared bias 1.26 1.48 2.28 1.22 0.00 0.00 0.74 0.00 1.97 3.06 12.00
Kalman  Theor. variance 0.73 0.19 0.80 0.45 0.40 0.68 0.21 0.21 0.34 0.08 4.09
filter Theor. squared error 200 167 3.07 166 040 068 096 021 232 314 16.09
Exper. squared error  1.82 1.60 2.77 1.59 0.41 0.68 0.97 0.21 2.13 3.15 15.31
Theor. squared bias 2.42 1.75 3.53 1.90 0.47 0.96 .00 1 0.16 2.47 3.17 17.81
MAP Theor. variance 0.22 0.27 0.16 0.64 0.69 0.71 0.360.36 0.17 0.09 3.68
estimator  Theor. squared error 2.63 2.02 3.69 2.54 1.16 1.671.36 0.52 2.64 3.26 21.48
Exper. squared error 2.52 1.89 3.44 2.45 1.14 1.571.34 0.51 2.49 3.24 20.60
Table 6. Health parameter % squared estimation errors (reduced noise)
Estimator Error type hl h2 h3 h4 h5 h6 h7 h8 h9 h10 Sum
Theor. squared bias  1.26 1.48 2.28 1.22 0.00 0.00 0.74 0.00 1.97 3.06 12.00
Kalman Theor. variance 0.02 0.00 0.03 0.01 0.01 0.02 0.00 0.00 0.01 0.00 0.10
filter Theor. squared error 129 148 230 122 001 002 074 000 198 306 12.10
Exper. squared error  1.13 1.41 1.97 1.16 0.01 0.02 0.75 0.00 1.79 3.08 11.31
Theor. squared bias 1.26 1.48 2.28 1.22 0.00 0.00 .74 0 0.00 1.97 3.06 12.00
MAP Theor. variance 0.03 0.00 0.04 0.01 0.01 0.02 0.000.00 0.01 0.00 0.13
estimator  Theor. squared error 1.30 1.48 2.32 1.22 0.01 0.020.74 0.00 1.99 3.06 12.14
Exper. squared error 1.14 1.41 1.98 1.17 0.01 0.020.75 0.00 1.79 3.08 11.34

levels were set to 1/80of their original levels, the estimators
were re-designed, and the comparison was repeltedte
Carlo simulation evaluations as previously desctibwere
applied (i.e., 375 random health parameter vect8dss in
duration, with estimation accuracy calculationselobgpon the
last 10 s of each 30 s test case). Theoreticakeapdrimental
estimation errors are shown in Table 5 and Tabler6the
original noise and reduced noise levels, respdygtivat
original noise levels the Kalman estimator is aoleproduce
smaller estimation errors. However, at the redutede level
the two estimation approaches are found to be ynahtical.
This comparison validates that the Kalman estimagipproach
is indeed producing a minimum mean squared estmagiror
as intended, while providing the capability to sopppeal-time
on-line estimation under dynamic operating scesario

DISCUSSION

While the systematic tuner selection approach ptede
here appears promising for on-line Kalman filtersdxh
parameter estimation applications, there are skyeestical
considerations which need to be assessed whenimgglych a
technique. The optimization routine attempts toimire the
overall squared estimation error—both bias andavae—
under steady-state operating conditions. The mgdtion of
the estimation variance in particular can comdatetxpense of
dynamic responsiveness of the Kalman filter. Tosiitate this
consider the time history plots of actual versuinmeged T40
shown in Figure 6. The top plot shows Kalman fikstimation
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results using a tuning parameter vector systentigtisalected
to minimize the error in four auxiliary parametéiziO, T50,
Fn and SmLPC) as presented in the previous secliba.
bottom plot shows Kalman filter estimation resulising a
tuning parameter vector systematically selectetitomize the
estimation error in T40 onhAt time 100 s a step change in the
health parameter input vector is introduced inte #ngine
model; this allows the dynamic response of the éstimators
to be compared. It can be observed that T40 estimat
variance in the bottom plot is reduced, as is teamsteady-
state estimation error (> 300 s). This is not daipy since one
would generally expect improved results when oping to

Tuners selected to minimize T40, T50, Fn and SmLPC error

— Estimate
— Actual

500 600

0 100 200 300 400

Tuners selected to minimize T40 error
T T T

b~

300 400 500
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Figure6. lllustration of tuner impact on estimator response
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minimize the error in a single parameter, as opphésenultiple

parameters. However, the estimator shown in théotvoplot

does require a significantly longer time to reatéady-state
convergence. Conversely, the estimator designeainimize

the steady-state error in four auxiliary parame(ep plot) is
unable to place as much emphasis on T40 estimaticance
reduction, but it is able to track dynamic chanige$40 more
rapidly. This example illustrates the inter-depermebetween
estimation variance and responsiveness. Therdfasegprudent
for a designer to evaluate the Kalman filter tousasthat it
tracks engine dynamics acceptably. If the dynamsponse is
unacceptable, the optimization routine can be replacing

more weight on estimation error bias reduction, lasd weight
on variance reduction.

All results presented in this paper are based tumefan
engine linear state-space model at a single opgraipint.
While this linear assessment enables experimeatalation of
theoretical predictions, it is not representativ@ctual aircraft
gas turbine engine operation which is a transiemt-limear
system operating over a broad range of operatingditons. In
order for the presented approach to be applicabeuld need
to be able to produce an optimal set of tuning ipetars, not
just at a single operating point but rather a dlgbaptimal
tuning parameter vector universally applicable ower range
of operating conditions that an engine is expected
experience. A potential approach to selecting glsitglobally
optimal” tuning parameter vector is to modify thgtimization
routine to minimize the combined estimation errovero
multiple engine operating points such as takedfimiz and
cruise. This would be a straightforward modificatito the
Matlab® optimization routine, but it would increase the
computational time required to calculate the ressihce the
systematic tuner selection process is only envégido be done
once during the system design process, this wilimpact the
on-line execution speed of the Kalman filter. Itaisticipated
that the application of globally optimal tuners lwigsult in
some estimation accuracy degradation relative toerki
optimized for individual operating points, althoutlits has not
yet been verified or quantified.

CONCLUSIONS

A systematic approach to tuning parameter seledtion
on-line Kalman filter based parameter estimatios ha&en
presented. This technique is specifically applieafiir the
underdetermined aircraft engine parameter estimatiase
where there are fewer sensor measurements thanownkn
health parameters which will impact engine outplitsreates
and applies a linear transformation matxix, to select a vector
of tuning parameters which are a linear combinatdnall
health parameters. The tuning parameter vect@iésted to be
of low-enough dimension to be estimated, while mining the
mean-squared error of Kalman filter estimates. Tmati-
parameter iterative search routine applied to agtjinselectV’
was presented. Results have shown that while
transformation matrix returned by the optimizatimutine is

the
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not unique (different matrices can be found whichdpce a
global minimum of the objective function), the rimgt is

effective in returning a transformation matrix wiis optimal,

or near optimal, regardless of its initial startiggess of the
matrix. The efficacy of the systematic approach tuaing

parameter selection was demonstrated by applyindo it
parameter estimation in an aircraft turbofan endjimear point
model. It was found to significantly reduce mearussed

estimation errors compared to the conventional @augr of
selecting a subset of health parameters to serdanass. In
some parameters the mean squared estimation edaction

was found to be over 80%. These estimation impreves
were theoretically predicted and experimentally idagkd

through Monte Carlo simulation studies.

The systematic approach to Kalman filter design
envisioned to be applicable for a broad range cbaerd
aircraft engine model-based applications which peed
estimates of unmeasured parameters. This includegelm
based controls, model-based diagnostics, and ortblife
usage algorithms. It is also envisioned to haveefinfor
sensor selection during the engine design prospesxifically
for assessing the performance estimation accurangfits of
different candidate sensor suites. Areas for futuwek include
extending the technique to produce a tuning pammedctor
optimal over a range of operating conditions, amdluating
the technique on a non-linear engine model, undér steady-
state and transient operating conditions.
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